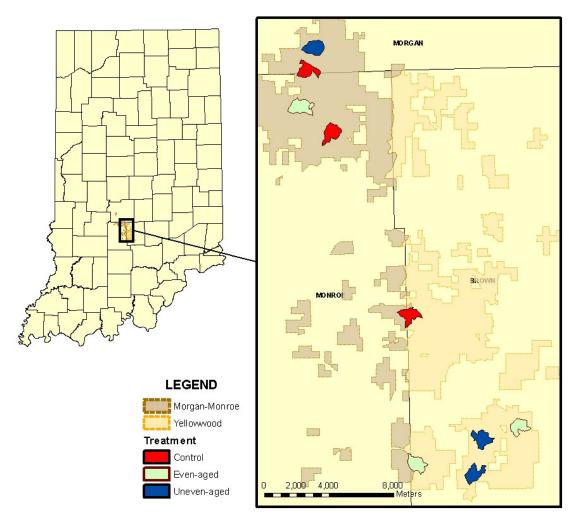
The Hardwood Ecosystem Experiment: Functional Diversity

Bryan Murray Postdoctoral Research Associate Department of Forestry & Natural Resources Purdue University

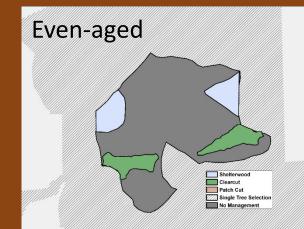

The HEE and Functional Diversity: Outline

- HEE project overview and experimental design
- Functional diversity and its applications
- Some preliminary results
- Future directions and discussion

- 1. Develop silvicultural systems that maintain oak dominated forests
- 2. Determine the impacts of these systems on ecological communities
- 3. Determine the impacts of these systems on human communities
- 4. Develop tools to engage the public regarding forest management and ecosystem health

HEE Experimental Design

Nine experimental units located in Morgan-Monroe and Yellowwood State Forests

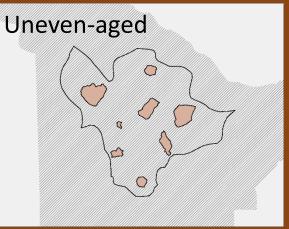

- Research core: 190-270 ac
- Buffer area: 540-975 ac

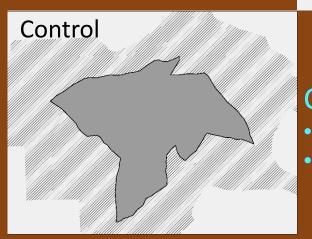
20 miles between northernmost and southernmost units

Three management systems:

- Even-aged
- Uneven-aged
- Control (no harvest)

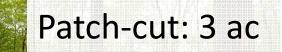
Buffer areas managed by singletree selection




Even-aged units:

- Clear-cuts (10 ac; 4 ha)
- Shelterwood (10 ac)
- "No harvest" matrix

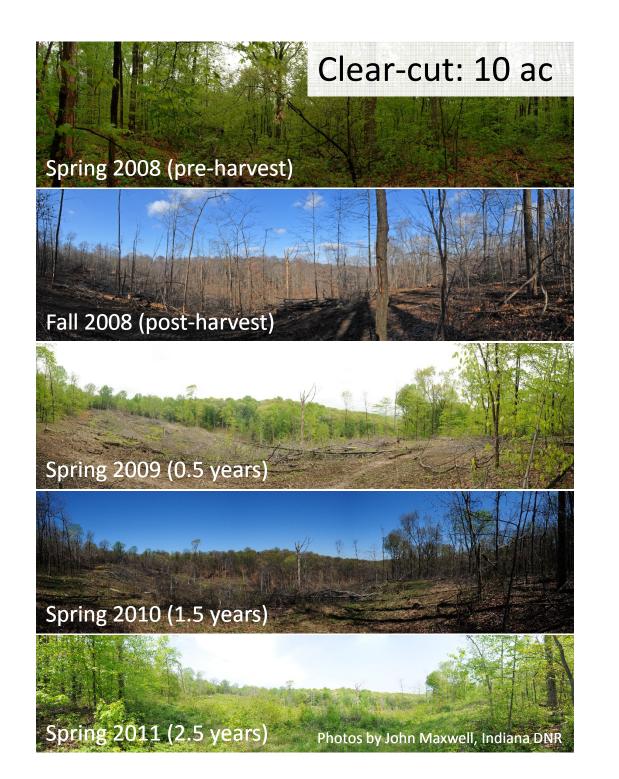
Uneven-aged units:


- Patch-cuts (1-5 ac; 0.4-2.0 ha)
- Single-tree selection matrix

Control units:

- No harvesting in research core
- Single-tree selection buffer

Spring 2008 (pre-harvest)


Fall 2008 (post-harvest)

Spring 2009 (0.5 years)

Spring 2010 (1.5 years)

Spring 2011 (2.5 years)

Photos by John Maxwell, Indiana DNR

The Many Taxa of the HEE

Breeding Birds Sampled in all 9 units 9 surveys since 2006 91 species (2006-2012) 47,471 observations ('06-'12)

Bats Sampled in all 9 units 8 surveys since 2006 7 species

Moths Sampled in 3 units (MMSF) 7 surveys since 2007 318 species (2007-2013) 38,453 captures ('07-'13)

Wood-boring Beetles Sampled in all 9 units 7 surveys since 2006 120 species

Note: there are many others! My work so far has focused on these five due to their trait diversity and availability of trait data.

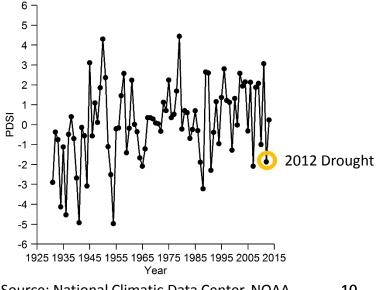
Trees Sampled in all 9 units 2 surveys (pre- & post-harv.) 144 species (incl. shrubs) ~ 50,000 records

Disturbance in Forest Ecosystems

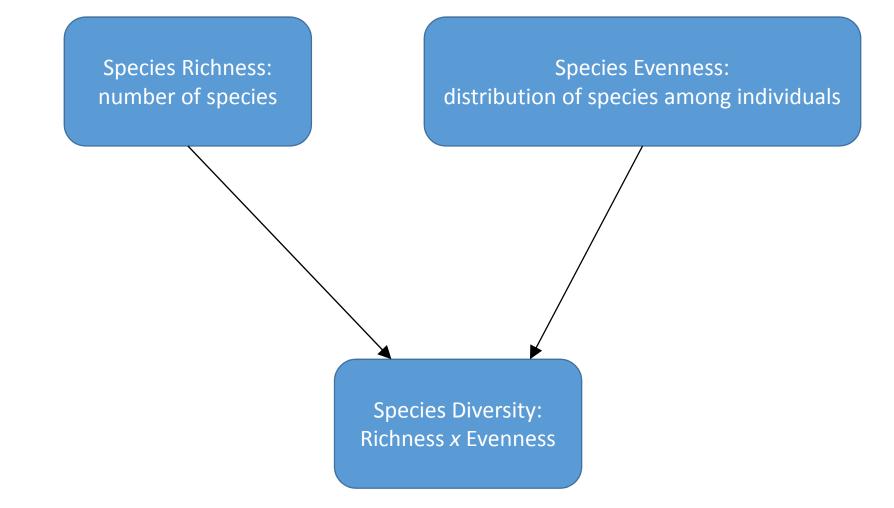
- Historic disturbance regimes
 - Wind
 - Fire
- Functional traits of trees that are linked to succession
 - Seed size
 - Wood density
 - Nutrient uptake rate
- Resource pulses are associated with disturbance

Stacked Ecological Disturbances

Planned



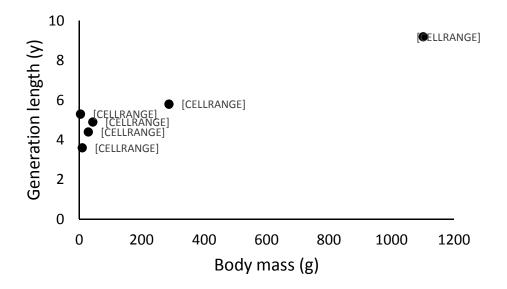
Unplanned



Source: National Climatic Data Center, NOAA

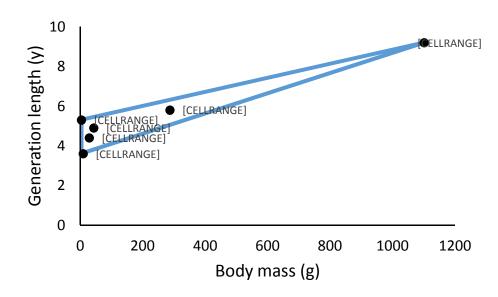
10

Species Diversity



Functional Diversity

Species	Body mass (g)	Generation length (y)
Cerulean warbler	9.04	3.6
Northern cardinal	42.6	4.9
Pileated woodpecker	286.6	5.8
Red-tailed hawk	1101.2	9.2
Ruby-throated hummingbird	3.1	5.3
Scarlet tanager	28.2	4.4


Functional Diversity

Species	Body mass (g)	Generation length (y)
Cerulean warbler	9.04	3.6
Northern cardinal	42.6	4.9
Pileated woodpecker	286.6	5.8
Red-tailed hawk	1101.2	9.2
Ruby-throated hummingbird	3.1	5.3
Scarlet tanager	28.2	4.4

Functional Diversity

Species	Body mass (g)	Generation length (y)
Cerulean warbler	9.04	3.6
Northern cardinal	42.6	4.9
Pileated woodpecker	286.6	5.8
Red-tailed hawk	1101.2	9.2
Ruby-throated hummingbird	3.1	5.3
Scarlet tanager	28.2	4.4

<u>Functional richness</u>: area of trait space filled by the community

<u>Functional evenness</u>: how evenly do species fill the trait space?

<u>Functional divergence</u>: how similar in trait values are the most abundant species?

Functional Traits: Birds

Trait Category	Taxa-specific Trait	Northern Cardinal	Scarlet Tanager
Body size	Body mass	42.6 g	28.2 g
Diet	Diet	70% plants & seeds 20% invertebrates 10% fruit	80% invertebrates 10% fruit 10% plants & seeds
Food acquisition	Foraging strata	40% ground 20% understory 20% mid-story 20% canopy	40% mid-story 40% canopy 10% understory 10% ground
Overwintering strategy	Migration	Νο	Yes
Life history	Generation length	4.9 years	4.4 years

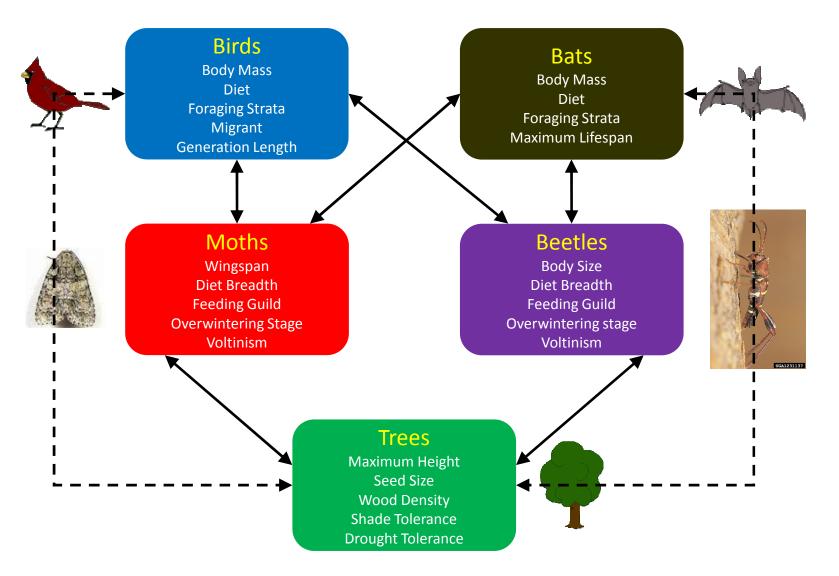
Functional Traits of the HEE

Birds **Body Mass** Diet **Foraging Strata** Migrant **Generation Length**

Bats Body Mass Diet **Foraging Strata** Maximum Lifespan

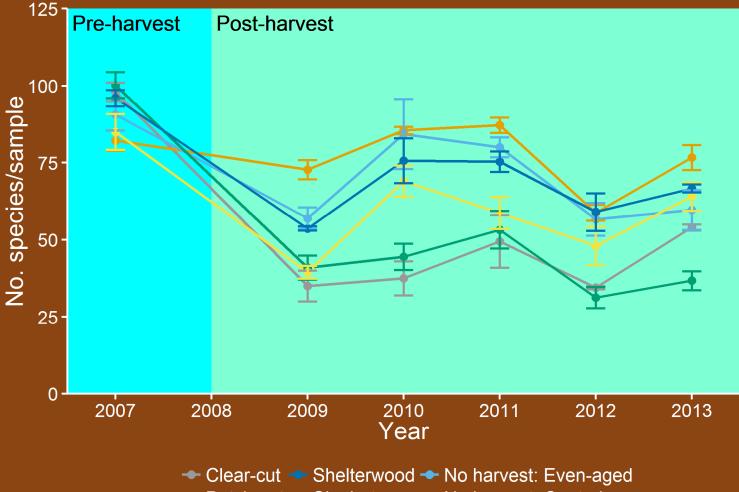
Moths Wingspan Diet Breadth **Feeding Guild**

Overwintering Stage Voltinism


Beetles Body Size Diet Breadth Feeding Guild Overwintering stage Voltinism

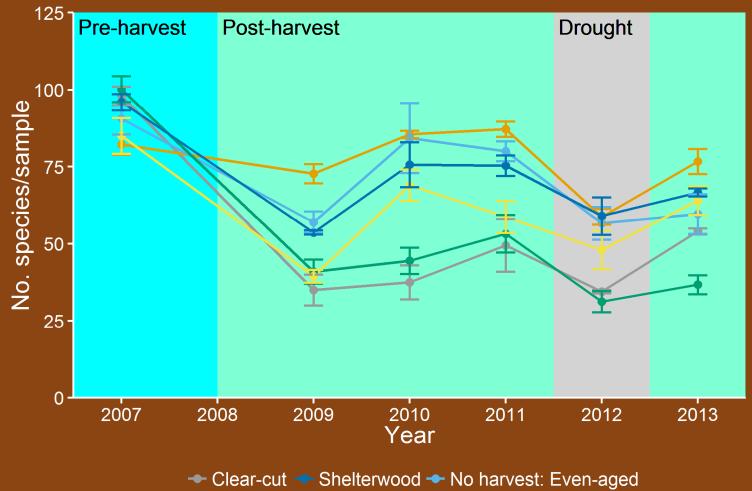
Trees Maximum Height Seed Size Wood Density Shade Tolerance **Drought Tolerance**

Functional Linkages

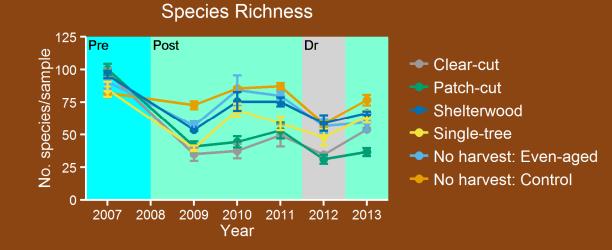


Moths: Harvest Level Example

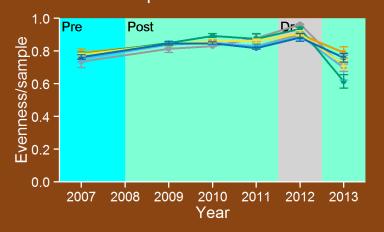
Trait Category	Taxa-specific Trait	Range
Body size	Wingspan	1.1 – 13 cm
Diet	Diet breadth	Generalist Specialist Oligophagous ^a
Food acquisition	Feeding guild	Generalist Herbivore Woody plant feeder Detritivore
Overwintering strategy	Overwintering stage	Egg Larva Pupa
Life history	Voltinism ^b	1, 2, or 3 generations/year

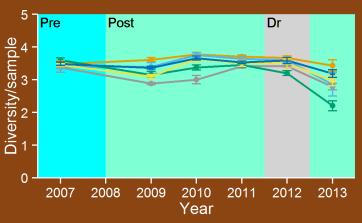

^aFeeds on genera within a single family ^bGenerations per year

Moths: Species Richness

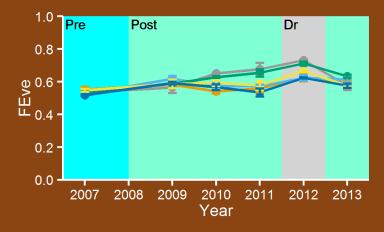

➡ Patch-cut Single-tree No harvest: Control

Moths: Species Richness

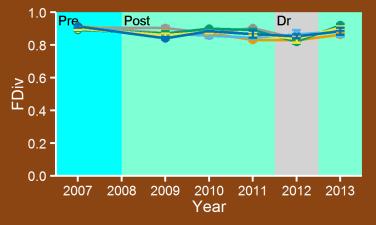

→ Patch-cut → Single-tree → No harvest: Control


Moths: Richness, Evenness, Diversity

Species Evenness



Moths: Functional Diversity


Functional Richness

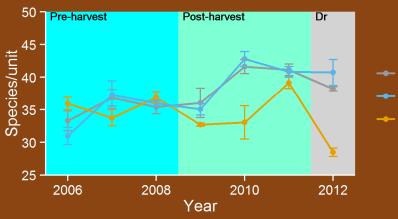
1.0 0.8 0.6 0.4 0.2 0.0 2007 2008 2009 2010 2011 2012 2013 Year

Functional Evenness

Functional Divergence

- Clear-cut - Shelterwood - No harvest: Even-aged

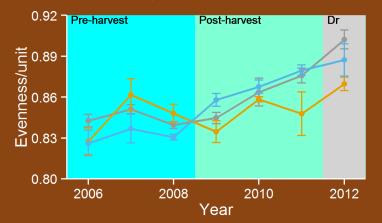
- Patch-cut - Single-tree - No harvest: Control

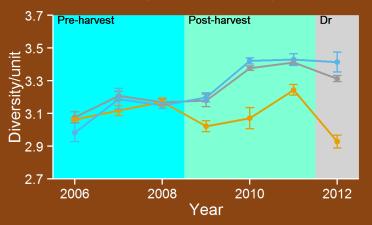

Birds: Landscape Example

Trait Category	Taxa-specific Trait	Range
Body size	Body mass ^a	3.09 - 5790 g
Diet	Diet ^a	% Invertebrates % Birds & Mammals % Reptiles & Amphibians % Fish % Fruit % Nectar % Seed % Plants
Food acquisition	Foraging strata ^a	% Water % Ground % Understory % Midstory % Canopy % Aerial
Overwintering strategy	Migration ^b	Yes/No
Life history	Generation length ^b	3.4 – 10.6 years

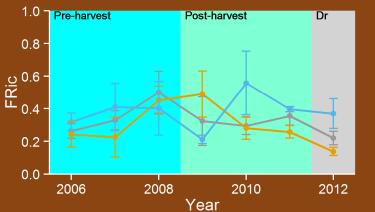
Trait sources: ^aWilman et al. 2014. Ecological Archives. ^bBirdlife.org

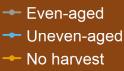
Birds: Richness, Evenness, Diversity Species Richness



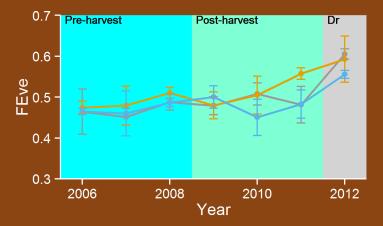


Species Evenness

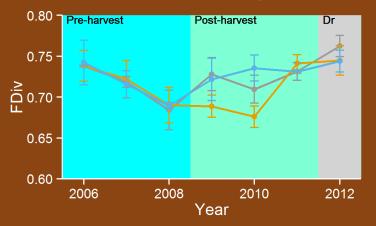

Species Diversity


Photos: Rick Bowers

Birds: Functional Diversity



Functional Richness



Functional Evenness

Functional Divergence

Photos: Rick Bowers

Ongoing Research Questions

- What are the advantages and disadvantages of using species or functional diversity in assessing species change after disturbance?
- Which traits drive functional linkages among trophic levels?
- Are there thresholds of functional diversity from which the community will not return to its predisturbance state?
- Do stacked disturbances increase or decrease functional diversity?

Acknowledgements

Collaborators

- Mike Jenkins (Purdue)
- Barny Dunning (Purdue)
- Jeff Holland (Purdue)
- Mike Saunders (Purdue)
- Keith Summerville (Drake)
- Joy O'Keefe (Indiana State)
- Andy Meier (HEE Project Coordinator)

- Indiana DNR, Division of Forestry
- Forestry and Natural Resources, Purdue University

Questions?

- More HEE info: http://www.heeforeststudy.org/
- Bryan Murray: bdmurray@purdue.edu