Future Water Demand in Central Indiana

Water Demand Forecast

- How do we currently use water?
 - Location
 - Withdrawal rates
 - Source of water lakes and rivers and aquifers
- Future water withdrawals?
 - How will use change?
 - -Seasonal Patterns

Central Indiana Region

9-County Region

- Metro-counties surrounding Indianapolis
- Contains large portion of the Upper White River Watershed
- High population and economic growth
- Central Indiana Utility Collaborative already meeting and sharing data

Rapid Growth in Counties

Rapid Growth in Counties

Estimated Population

Location of 2018 Water Withdrawals

Illustration of Monthly Variation by Use

Aquifers

Trends in GW / SW Use

Groundwater Total Withdrawals

Trends in GW / SW Use

050 good 250

2018 PWS Withdrawals by Service Territory

Future Water Withdrawals

Data Sources

Water Forecast Methods

Unit-use method

-Commercial and Industrial and Mining - gallons per employee

-Power Generation - gallons per kilowatt hour

-Domestic Supply - gallons per capita

Historical trends

-Irrigation and Agriculture - trends from 2005-2017 withdrawals

Multiple Regression

-Public Water Supply - gallons per capita forecast with temp, ppt, and income

Water Forecast Summary*

Irrigation and Agriculture

Commercial / Industrial / Mining

Power Generation

Domestic

Public Water Supply

3% of total withdrawals Increase from 13 MGD to 19 MGD 22% of total withdrawals Sector withdrawals are \sim 85% mining Increase from 83 MGD to 96 MGD 15% of total withdrawals Historical decrease due to fuel changes Increase from 58 MGD to 87 MGD 8% of total withdrawals Increase from 32 MGD to 45 MGD 52% of total withdrawals Largest sector / highest growth Increase from 199 MGD to 250 MGD

*Percent withdrawals from 2018; Increases reported from 2018-2070

Forecast of Withdrawals by Sector

Public Water Supply Growth (%)

Forecasted monthly withdrawals — Seasonal Variation — PWS

19

Climate Change Scenarios

Hot / Dry

- -Increase in temperature $3.1 3.2^{\circ}F$ for 2035 and $6.0 6.2^{\circ}F$ in 2060
- -Decrease in precipitation 0.3-0.6% in 2035 and 0.5-1.2~% in 2060

Warm / Wet

- -Increase in temperature 2.3 $^\circ F$ for 2035 and 4.4 4.5 $^\circ F$ in 2060
- -Increase in precipitation 6.0-6.5% in 2035 and 11.7-12.6% in 2060

30% Drought

- -Increase in temperature $3.1 3.2^{\circ}F$ for 2035 and $6.0 6.2^{\circ}F$ in 2060
- -Decrease in precipitation 30% from Hot/Dry scenario

Public Water Supply Scenarios + 25 to 50 MGD

21

Is there enough water in the region to meet future demands?

Water Resource Used in Region

Surface water from the White River is used for Indianapolis drinking water as well as cooling water and mining.

Groundwater from the outwash aquifer is primarily used for municipal drinking water and other uses.

> **Deep Bedrock Aquifer** also is used by municipal systems for drinking water and other uses.

QUESTIONS

jwittman@intera.com